Smoothed Gradients for Stochastic Variational Inference

نویسندگان

  • Stephan Mandt
  • David M. Blei
چکیده

Stochastic variational inference (SVI) lets us scale up Bayesian computation to massive data. It uses stochastic optimization to fit a variational distribution, following easy-to-compute noisy natural gradients. As with most traditional stochastic optimization methods, SVI takes precautions to use unbiased stochastic gradients whose expectations are equal to the true gradients. In this paper, we explore the idea of following biased stochastic gradients in SVI. Our method replaces the natural gradient with a similarly constructed vector that uses a fixed-window moving average of some of its previous terms. We will demonstrate the many advantages of this technique. First, its computational cost is the same as for SVI and storage requirements only multiply by a constant factor. Second, it enjoys significant variance reduction over the unbiased estimates, smaller bias than averaged gradients, and leads to smaller mean-squared error against the full gradient. We test our method on latent Dirichlet allocation with three large corpora.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance Sampled Stochastic Optimization for Variational Inference

Variational inference approximates the posterior distribution of a probabilistic model with a parameterized density by maximizing a lower bound for the model evidence. Modern solutions fit a flexible approximation with stochastic gradient descent, using Monte Carlo approximation for the gradients. This enables variational inference for arbitrary differentiable probabilistic models, and conseque...

متن کامل

Local Expectation Gradients for Black Box Variational Inference

We introduce local expectation gradients which is a general purpose stochastic variational inference algorithm for constructing stochastic gradients by sampling from the variational distribution. This algorithm divides the problem of estimating the stochastic gradients over multiple variational parameters into smaller sub-tasks so that each sub-task explores intelligently the most relevant part...

متن کامل

Combine Monte Carlo with Exhaustive Search: Effective Variational Inference and Policy Gradient Reinforcement Learning

In this paper we discuss very preliminary work on how we can reduce the variance in black box variational inference based on a framework that combines Monte Carlo with exhaustive search. We also discuss how Monte Carlo and exhaustive search can be combined to deal with infinite dimensional discrete spaces. Our method builds upon and extends a recently proposed algorithm that constructs stochast...

متن کامل

Re-using gradient computations in automatic variational inference

Automatic variational inference has recently become feasible as a scalable inference tool for probabilistic programming. The state-of-the-art algorithms are stochastic in two respects: they use stochastic gradient descent to optimize an expectation that is estimated with stochastic approximation. The core computation of such algorithms involves evaluating the loss and its automatically differen...

متن کامل

Conjugate-Computation Variational Inference: Converting Variational Inference in Non-Conjugate Models to Inferences in Conjugate Models

Variational inference is computationally challenging in models that contain both conjugate and non-conjugate terms. Methods specifically designed for conjugate models, even though computationally efficient, find it difficult to deal with non-conjugate terms. On the other hand, stochastic-gradient methods can handle the nonconjugate terms but they usually ignore the conjugate structure of the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014